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the Riemann maPPina theorem

« Let ¢ € be a non-empty open simply connected
set. Let D={z€C||z| <1} be the open unit disc.

¢ A holomorphic map Q—D s said to be
bi-holomorphic it it is bilective and the inverse
map fF1:D—=Q is dso Inolomorphic.

e The Riemann mapping theorem says that there is
bi-holornor‘ophic map between the domain © and
the open unit disc D.

e Thus the set of holomorphic Functions on Q can
be identified with holomorphic functions on D
using the bi—ho\omorphic Riemann map between
these two sets.



the ball and the Polydisc
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the ball and the Polydisc

C I_C+ IBm s {Z S (Zla"'zm) SC™ | |Z1|2++ |Zm|2 < 1} bc
the Euclidean ball in c™.  Also, let
R R ™ P75 [ e B~ oeaihg
Polydi«;c.

e Both the ball B™ and the Polydi«;c D™ are simply

connected: These are the unit balls in the ¢, and
(. horms, respectively. Therefore, in parficular

convex. Hence both of these are simply
conhected. 1t is natural to ask it they are
bi—holomorphic.
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bi-holomorhic

e What is a lai—ho|omorphic map ¢ From B to D™ ?

« Since ¢(2) is in D™ c C™ For every z¢B,, , the
Function ¢:B,, ~ D™ is represented by m
co-ordinate Functions ¢,,....4,, with each
¢p: B, 2D, 1<k<m, holomorPhic.

e« The map ¢ is said o be bi-holomorphic it it

admits an inverse, that is, i there is a
holomorphic map ¢:D™ —B,, such that

Yo¢:B,, — B, is the identity map.

e We ask if there is such a bi—holomorphic map
between B,, and D™, m>1.
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Schwarz lemma

« The case of the unit disc: IF f:D—~D is any
holomorphic function with f(0)=0, then |f/(0)|<1.

e The case of any ball B:={zcC™ ||z <1}:
F f:B>D is any holomorphic Function with
f(0)=0, then For any veB, we have |Df(0)-v|<1,
where
Df(0)-v=v,0,f(0)+:+v,,0,,f(0).
« For the verification of this inequdlity, pick any
weB andlet A,:D—B be the Function A, (z) = zw.

e We have that foA,:D—D and foA,(0)=0.

w

Therefore, by the Schwarz lemma,

[D(f o A,)(0)] = [Df (A, (0)) DA, (0)] = [Df(0) - w]| <1
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CaraJrh’codory norm

e FOr QcC™ velC™ and we the Car‘a’rhéodor\/

horm Cq ,(v) of the vector v at w is defined to
be the supremum:

sup{|Df(w)-v|| f: 2 — Dholomorphic, f(w) = 0}.
o Claim: {v|Cgq(v) <1} ={v ||v|g<1}=B
e The Schwarz lemma for B shows that
BC {v|Cpo(v) <1} . To check the inclusion, the
other way round, we observe that if 1B~ C is a

linear functional with ¢(B)C D, then Di(0)=¢ and
hence i we pick v such that Cp,(v) <1, then
[vlg <1 Thus we have B2 {v|Cgy(v) <1} proving
the clam.

e Thus Cgo(v) = vl
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cor\Jrrachivier

» Suppose that ¢:B— B’ is a holomorphic Function
with ¢(0)=0. Then

Cp o(D¢(0) - v) < Cp o(v)
o prook: Set v =Dy(0)-v. We have

Cyr o(v') = sup{|Df(0)-v'[| f: B" = D, holomorphic, f(0) = 0}
= sup{|Df(0)Dy(0)-v| | f : B’ — D, holomorphic, f(0) = 0}
= sup{|D(f°¢)(0)-v|| f: B" = D, holomorphic, f(0) = 0}
< sup{|Dg(0)-v|| g : B — D, holomorphic, g(0) = 0}
= Cpo(v)

Or in other words, Dy(0):C™ —C" is a
contraction.
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linear isochrry

« We now ask what happens it there is a map
¥:B =B which is holomorphic and o =id.
e First, note that
ld = D(p01)(0) = D (16(0)) Dep(0) = Dip(0) De(0)
implying Di(0) = Dp(0)".  Thus we have
Cp.o(Dp(0)™'-v") = Cg o(Dp(0) - v') < Cpys o(v')

o it Follows that both Dy(0) as well as Dp(0)~! are
contractions. Hence (ca;y exercise) we have
that |Dy(0) - v]g = [v]g.



Parallcloaram law

o Now, suppose that there is a bi—holomorphic map
p:B,, -D™. Let w=p(0)ecD™ Composing with the
Mébius maps ¢,.....¢,, ofF the unit disc with

¢;(w;) =0, we can assume, without loss of
generality that »(0)=0. We have shown that the

linear map Dy(0) must be then an isometry
between the two spaces (C™,|-|,) and (€™,]-]..).



Parallcloaram law

e Now, suppose that there is a bi-holomorphic map
p:B,, -»D™ Let w=p(0)ecD™ Composing with the
Mébius maps ¢,.....¢,, ofF the unit disc with

¢;(w;) =0, we can assume, without loss of
generality that »(0)=0. We have shown that the

linear map Dy(0) must be then an isometry
between the two spaces (C™,|-|,) and (C€™,]-]..).

e No isomc‘rr‘y between these two spaces con exist
since one of them comes From an inner Proc{uc-l-,
therefore satisfies the paralielogram law

2l + 20l = Ju+ v+ Ju—v|?,

while +he other doesn't.
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the Final verification

« Any pair of vectors u,v in an inner product
space (C™,|-|,) must obey the parallelogrom law.

« Suppose that I' is a linear isometry between
€™ ]-l2) and (€™,]-]) - Then any pair of vectors
in (€™,]-|«) must dlso obey the parallelogram law.

e The pair of vectors u:=(1,0..,0) and v:=(0,1,0...,0)
in cm cviclcnﬂy viclate the paralielogram law
lcadin@ to a contradiction.



Thank. Youl



