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the Riemann mapping theorem

• Let Ω⊊ ℂ be a non-empty open simply connected
set. Let 𝔻 = {𝑧 ∈ ℂ ∣ |𝑧| < 1} be the open unit disc.

• A holomorphic map Ω → 𝔻 is said to be
bi-holomorphic if it is bijective and the inverse
map 𝑓−1 ∶ 𝔻 → Ω is also holomorphic.

• The Riemann mapping theorem says that there is
bi-holomorophic map between the domain Ω and
the open unit disc 𝔻.

• Thus the set of holomorphic functions on Ω can
be identified with holomorphic functions on 𝔻
using the bi-holomorphic Riemann map between
these two sets.
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the ball and the polydisc

• Let 𝔹𝑚 ∶= {𝑧 ∶= (𝑧1,…𝑧𝑚) ∈ ℂ𝑚 ∣ |𝑧1|2 +⋯+|𝑧𝑚|2 < 1} be
the Euclidean ball in ℂ𝑚. Also, let
𝔻𝑚 ∶= {𝑧 ∶= (𝑧1,…𝑧𝑚) ∈ ℂ𝑚 ∣ |𝑧1|,…, |𝑧𝑚| < 1} be the
polydisc.

• Both the ball 𝔹𝑚 and the polydisc 𝔻𝑚 are simply
connected: These are the unit balls in the ℓ2 and
ℓ∞ norms, respectively. Therefore, in particular
convex. Hence both of these are simply
connected. It is natural to ask if they are
bi-holomorphic.
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bi-holomorhic

• What is a bi-holomorphic map 𝜙 from 𝔹𝑚 to 𝔻𝑚 ?

• Since 𝜙(𝑧) is in 𝔻𝑚 ⊂ ℂ𝑚 for every 𝑧 ∈ 𝔹𝑚 , the
function 𝜙 ∶ 𝔹𝑚 → 𝔻𝑚 is represented by 𝑚
co-ordinate functions 𝜙1,…,𝜙𝑚 with each
𝜙𝑘 ∶ 𝔹𝑚 → 𝔻, 1 ≤ 𝑘 ≤ 𝑚, holomorphic.

• The map 𝜙 is said to be bi-holomorphic if it
admits an inverse, that is, if there is a
holomorphic map 𝜓 ∶ 𝔻𝑚 → 𝔹𝑚 such that
𝜓 ∘𝜙 ∶ 𝔹𝑚 → 𝔹𝑚 is the identity map.

• We ask if there is such a bi-holomorphic map
between 𝔹𝑚 and 𝔻𝑚, 𝑚 > 1.
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Schwarz lemma
• The case of the unit disc: If 𝑓 ∶ 𝔻 → 𝔻 is any

holomorphic function with 𝑓(0) = 0, then |𝑓 ′(0)| ≤ 1.

• The case of any ball 𝔹 ∶= {𝑧 ∈ ℂ𝑚 ∣ ‖𝑧‖ < 1}:
If 𝑓 ∶ 𝔹 → 𝔻 is any holomorphic function with
𝑓(0) = 0, then for any 𝑣 ∈ 𝔹 , we have |𝐷𝑓(0) ⋅ 𝑣| ≤ 1,
where

𝐷𝑓(0) ⋅ 𝑣 = 𝑣1𝜕1𝑓(0)+⋯+𝑣𝑚𝜕𝑚𝑓(0).
• For the verification of this inequality, pick any

𝑤 ∈ 𝔹, and let Λ𝑤 ∶ 𝔻 → 𝔹 be the function Λ𝑤(𝑧) = 𝑧𝑤.
• We have that 𝑓 ∘Λ𝑤 ∶ 𝔻 → 𝔻 and 𝑓 ∘Λ𝑤(0) = 0.

Therefore, by the Schwarz lemma,
|𝐷(𝑓 ∘Λ𝑤)(0)| = |𝐷𝑓(Λ𝑤(0))𝐷Λ𝑤(0)| = |𝐷𝑓(0) ⋅𝑤| ≤ 1
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Carath’eodory norm

• For Ω ⊂ ℂ𝑚, 𝑣 ∈ ℂ𝑚, and 𝑤 ∈ Ω, the Carathéodory
norm 𝐶Ω,𝑤(𝑣) of the vector 𝑣 at 𝑤 is defined to
be the supremum:

sup{|𝐷𝑓(𝑤) ⋅ 𝑣| ∣ 𝑓 ∶ Ω → 𝔻holomorphic, 𝑓(𝑤) = 0}.

• Claim: {𝑣 ∣ 𝐶𝔹,0(𝑣) < 1} = {𝑣 ∣ ‖𝑣‖𝔹 < 1} = 𝔹

• The Schwarz lemma for 𝔹 shows that
𝔹 ⊆ {𝑣 ∣ 𝐶𝔹,0(𝑣) < 1} . To check the inclusion, the
other way round, we observe that if ℓ ∶ 𝔹 → ℂ is a
linear functional with ℓ(𝔹) ⊆ 𝔻, then 𝐷ℓ(0) = ℓ and
hence if we pick 𝑣 such that 𝐶𝔹,0(𝑣) < 1, then
‖𝑣‖𝔹 < 1. Thus we have 𝔹 ⊇ {𝑣 ∣ 𝐶𝔹,0(𝑣) < 1} proving
the claim.

• Thus 𝐶𝔹,0(𝑣) = ‖𝑣‖𝔹.
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contractivity

• Suppose that 𝜑 ∶ 𝔹 → 𝔹′ is a holomorphic function
with 𝜑(0) = 0. Then

𝐶𝔹′,0(𝐷𝜑(0) ⋅ 𝑣) ≤ 𝐶𝔹,0(𝑣)

• proof: Set 𝑣′ = 𝐷𝜑(0) ⋅ 𝑣. We have

𝐶𝔹′,0(𝑣′) = sup{|𝐷𝑓(0) ⋅ 𝑣′| ∣ 𝑓 ∶ 𝔹′ → 𝔻, holomorphic, 𝑓(0) = 0}
= sup{|𝐷𝑓(0)𝐷𝜑(0) ⋅ 𝑣| ∣ 𝑓 ∶ 𝔹′ → 𝔻, holomorphic, 𝑓(0) = 0}
= sup{|𝐷(𝑓 ∘𝜑)(0) ⋅ 𝑣| ∣ 𝑓 ∶ 𝔹′ → 𝔻, holomorphic, 𝑓(0) = 0}
≤ sup{|𝐷𝑔(0) ⋅ 𝑣| ∣ 𝑔 ∶ 𝔹 → 𝔻, holomorphic, 𝑔(0) = 0}
= 𝐶𝔹,0(𝑣)

Or in other words, 𝐷𝜑(0) ∶ ℂ𝑚 → ℂ𝑛 is a
contraction.
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linear isometry

• We now ask what happens if there is a map
𝜓 ∶ 𝔹′ → 𝔹 which is holomorphic and 𝜓 ∘𝜑 = 𝑖𝑑.

• First, note that
Id = 𝐷(𝜑∘𝜓)(0) = 𝐷𝜑(𝜓(0))𝐷𝜓(0) = 𝐷𝜑(0)𝐷𝜓(0)

implying 𝐷𝜓(0) = 𝐷𝜑(0)−1. Thus we have
𝐶𝔹,0(𝐷𝜑(0)−1 ⋅ 𝑣′) = 𝐶𝔹,0(𝐷𝜓(0) ⋅ 𝑣′) ≤ 𝐶𝔹′,0(𝑣′)

• It follows that both 𝐷𝜑(0) as well as 𝐷𝜑(0)−1 are
contractions. Hence (easy exercise) we have
that ‖𝐷𝜑(0) ⋅ 𝑣‖𝔹′ = ‖𝑣‖𝔹.
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that ‖𝐷𝜑(0) ⋅ 𝑣‖𝔹′ = ‖𝑣‖𝔹.
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parallelogram law

• Now, suppose that there is a bi-holomorphic map
𝜑 ∶ 𝔹𝑚 → 𝔻𝑚. Let 𝑤 = 𝜑(0) ∈ 𝔻𝑚. Composing with the
Möbius maps 𝜑1,…,𝜑𝑚 of the unit disc with
𝜑𝑖(𝑤𝑖) = 0, we can assume, without loss of
generality that 𝜑(0) = 0. We have shown that the
linear map 𝐷𝜑(0) must be then an isometry
between the two spaces (ℂ𝑚, ‖ ⋅ ‖2) and (ℂ𝑚, ‖ ⋅ ‖∞).

• No isometry between these two spaces can exist
since one of them comes from an inner product,
therefore satisfies the parallelogram law

2‖𝑢‖2 +2‖𝑣‖2 = ‖𝑢+𝑣‖2 +‖𝑢−𝑣‖2,
while the other doesn’t.
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the final verification

• Any pair of vectors 𝑢,𝑣 in an inner product
space (ℂ𝑚, ‖ ⋅ ‖2) must obey the parallelogram law.

• Suppose that Γ is a linear isometry between
(ℂ𝑚, ‖ ⋅ ‖2) and (ℂ𝑚, ‖ ⋅ ‖∞) . Then any pair of vectors
in (ℂ𝑚, ‖ ⋅ ‖∞) must also obey the parallelogram law.

• The pair of vectors 𝑢 ∶= (1,0…,0) and 𝑣 ∶= (0,1,0…,0)
in ℂ𝑚 evidently violate the parallelogram law
leading to a contradiction.
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